| Course Title | Multivariable Calculus |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Course Code | MAT203 |  |  |  |  |
| Course Type | Elective |  |  |  |  |
| Level | Bachelor (1st Cycle) |  |  |  |  |
| Year / Semester | $4^{\text {th }}$ Year $/ 7{ }^{\text {th }}$ Semester |  |  |  |  |
| Teacher's Name | TBA |  |  |  |  |
| ECTS | 6 | Lectures / week | 3 hours / 14 weeks | Laboratories / week | N/A |
| Course Purpose and Objectives | An Introduction to Geometric Vector Analysis and Extension of Differential and Integral Calculus to Functions of Several Variables. |  |  |  |  |
| Learning Outcomes | Upon successful completion of the course, students will be able to: <br> - Recognize the concept of a vector and appreciate its significance as a new tool for describing geometry. <br> - Solve a large variety of problems on lines, planes, solids <br> - Differentiate and integrate vector functions. <br> - Recognize the concept of a function of several variables. <br> - Practice partial derivatives and multiple integrals of functions of several variables and discuss their geometrical interpretations wherever applicable. |  |  |  |  |
| Prerequisites | MAT200 | Co- | quisites | None |  |
| Course Content | The Polar Coordinate System. From Polar to Rectangular Coordinates. From Rectangular to Polar Coordinates. Graphing in Polar Coordinates. Rules of Symmetry. <br> Vectors in the Plane Vectors and Vector Operations. Geometric Definition of a Vector. Algebraic Definition of a Vector. The Triangle Inequality. The Dot Product. Angle Between Two Vectors. Orthogonality. Projections Vector Functions. Plane Curves and Parametric Equations. Cartesian Equation of a Plane Curve. The Equation of the Tangent Line to a Parametric Curve. The Differentiation and Integration of a Vector Function. Unit Tangent Vector. Unit Normal Vector. Arc Length. Parameter of Arc Length. The Rectangular Coordinate System in Space. Sphere. Three Dimensional Vectors. Direction of a Vector. Direction Cosines. The Dot Product. Angle Between Two Vectors. Parallel and Orthogonal Vectors. Projection. Lines in Three Dimensions. Vector Equation, Parametric Equations, and Symmetric Equations of a Line. The Cross Product of Two Vectors. <br> Area of a Parallelogram. Volume of a Parallelepiped. Planes. Normal Vector. Parallel Planes. Distance From a Plane to a Point. Quadric Surfaces. Sphere. Right Circular Cylinder. Parabolic Cylinder. Elliptic Cylinder. Hyperbolic Cylinder. Ellipsoid. Hyperboloid of One Sheet. Hyperboloid of Two Sheets. |  |  |  |  |


|  | Elliptic Paraboloid. Hyperbolic Paraboloid. Elliptic Cone. Vector Functions and <br> Parametric Equations in Three Dimensions. Cylindrical and Spherical <br> Coordinates. Functions of Two and Three Variables. Domain and Range. <br> Contour Curves. Isothermal Curves. <br> Equipotential Curves. Constant Profit Curves. Limits and Continuity. Rule for <br> Nonexistence of a Limit. Continuity. Open Ball. Closed Ball. <br> Partial Derivatives. Higher-Order Partial Derivatives. Equality of Mixed Partials. <br> Differentiability and the Gradient. The Chain Rule. Tangent Planes, Normal <br> Lines, and Gradients. Directional Derivatives and the Gradient. Maxima and <br> Minima for a Function of Two Variables. Definition of Local Maxima and Minima. <br> Critical Points. Saddle Point. Second Derivative Tests. Constrained Maxima <br> and Minima - Lagrange Multipliers. <br> Multiple Integration. Volume Under a Surface and the Double Integral. <br> Integrability Over a Function. The Calculation of Double Integrals. Repeated <br> Integral. Reversing the Order of Integration. Surface Area. The Triple Integral. <br> Volume, Density, and Mass. <br> Recent developments and contemporary issues pertaining to the subject- <br> matter of the course. |
| :--- | :--- |
| Face- to- face |  |
| Teaching |  |
| Methodology | Marsden, J. \& Tromba, A. Vector Calculus, Freeman <br> Sibliography |
| Spiegel, M. Schaum's Srs., ADVANCED CALCULUS |  |
| McGraw Hill |  |
| Stein, S., CALCULUS AND ANALYTIC GEOMETRY |  |
| McGraw Hill |  |
| Blanck, B. \& Krantz, S., Calculus Multivariable, Wiley |  |
| Briggs, W., Cochran, L. \& Gillett, G., Calculus for Scientists and Engineers, |  |
| Multivariable, Pearson |  |
| Musa, S. \& Santos, D. Multivariable and Vector Calculus, An Introduction, |  |
| Mercury Learning and Information |  |

