Course Title	Parallel and Distributed Computing						
Course Code	ECE430						
Course Type	Elective						
Level	Bachelor (1 st Cycle)						
Year / Semester	4 th Year / 8 th Semester						
Teacher's Name	TBA						
ECTS	6	Lectures / week	3 hours / [/] weeks	14 L \	Laboratories / week	N/A	
Course Purpose and Objectives	The course aims to introduce students to the technologically important area of parallel and distributed computing, and how local computation and information exchange can result to a global computation and problem solving. Important architectures and technological tools and advances of parallel computer machines are discussed.						
	The course introduce the students to important characteristics and algorithms for important problems of distributed and parallel systems and computer communication networks, such as multi-core, distributed shared memory, message passing, fault-tolerance, consensus, and leader election.						
Learning Outcomes	 Upon successful completion of the course, students will be able to: Describe and discuss parallel computing and performance measures Explain parallel and distributed computing models and architectures Describe and apply parallel and distributed programming languages, environments and algorithms in parallel and distributed settings Describe, utilize and compare important distributed and parallel algorithms for each model, for various important problems such as routing, sorting, numerical and control problems Understand, discuss and apply fundamental concepts in the area of message passing and shared memory concurrency Analyze and compare parallel and distributed algorithms for correctness, reliability, and performance. 						
Prerequisites	CSE320		Co-requisites		None		
Course Content	Distributed systems Protocols: The model, Communication protocols, Routing algorithms Deadlock-free packet switching						

	Fundamental Algorithms: Wave and traversal algorithms, Election algorithms, Termination detection, Synchrony in networks				
	Fault Tolerance: Fault tolerance in distributed systems				
	Parallel systems				
	Introduction, The Power and Potential of Parallelism, Examining Sequential and Parallel Programs, Parallelism Using Multiple Instruction Streams, Scalable Performance and Portability				
	Parallel Computers And Their Model: Balancing Machine Specifics with Portability, A Look at Five Parallel Computers, The RAM: An Abstraction of a Sequential Computer, The PRAM: A Parallel Computer Model				
	Reasoning about Performance: Basic Concepts, Performance Trade- Offs, Measuring Performance				
	First Steps Towards Parallel Programming: Task and Data Parallelism				
	Scalable Algorithmic Techniques: The Inevitability of Trees, Blocks of Independent Computation, Schwartz' Algorithm, Assigning Work To Processes Statically and Dynamically, The Reduce & Scan Abstractions, Trees				
	Programming with Threads: POSIX Threads, Thread Creation and Destruction, Mutual Exclusion Synchronization, Safety Issues, Performance Issues				
	Open MP: Examples, Thread Behavior and Interaction Sections				
	Local View Programming Languages: MPI: The Message Passing Interface, Getting Started, Safety Issues, Performance Issues				
	Introduction to General General-Purpose GPU Programming with CUDA.				
Teaching Methodology	Face- to- face				
	Students in this course are expected to work on group activities, such as projects, assignments, literature reviews that may deal with the investigation and solution of a problem or with the design and/or implementation of a system. Group activities aim to motivate students to work within a group, develop critical thinking, improve their communication and decision-making skills, and promote active learning.				
Bibliography	Vipin Kumar, George Karypis, Anshul Gupta, Ananth Grama, Introduction to Parallel Computing, Addison-Wesley				
	Introduction to Distributed Algorithms, Gerard Tel, Cambridge University Press.				
	Calvin Lin, Larry Snyder, Principles of Parallel Programming, Pearson				

	Michael J. Quinn, Parallel Computing, Theory and Practice, McGraw- Hill					
	Ian Foster, Designing and Building Parallel Programs: Concepts and Tools for Parallel Software Engineering, Addison-Wesley Longman					
	Jason Sanders, Edward Kandrot, CUDA by Example: An Introduction to General-Purpose GPU Programming, NVIDIA, Addison Wesley.					
Assessment						
	Examinations	70%				
	Assignments/Lab	20%				
	Class Participation and Attendance	10%				
		100%				
Language	English					