
circuits, advantages and disadvantages of using digital systems, interface between digital and analogue systems.
Number Systems and Encoding: The binary number system, binary counting, the hexadecimal number system, integer and fixed-point conversions between binary, hexadecimal and decimal numbers, utilization of binary quantities, binary encoding schemes, encoding and decoding using BCD, Grey, ASCII and Unicode binary codes.
Boolean Algebra fundamentals: Axiomatic definition of Boolean algebra, the AND, OR, NOT logic operations, representation of Boolean operations using logic gates. Logic gate characteristics, IEEE / ANSI standards and conventions, derived Boolean algebra operations (NAND, NOR, XOR, XNOR), implementation and conversion between standardized Boolean function expression forms and conventions, description and effective utilization of Boolean algebra theorems, DeMorgan's Theorem.
Logic Circuits: Mathematical modelling of logic circuits using Boolean functions and truth tables, implementation of logic circuit from given Boolean function expression (logic circuit design), derivation of Boolean function from given logic circuit (logic circuit analysis), derivation of truth table from given logic circuit (simulation)

Hardware Description Language: Introduction to Hardware Description Language (HDL), necessity of using HDL in modern digital systems design, standard HDLs (VHDL / Verilog), description of the logic synthesis process using HDLs, modelling logic circuits using HDL.
Combinational Circuit Design: Basic definition of combinational circuits, description and implementation of the analytic process followed for the design of generic combinational circuits, optimisation of combinational circuits using the Boolean function manipulation methodology and the Karnaugh Map methodology (2, 3, and 4variable cases), combinational circuit design examples.
Integrated Circuits: Description of an Integrated Circuit (IC), history and types of ICs, the TTL and CMOS logic families, technical characteristics of ICs.

Digital Arithmetic: Signed and unsigned binary numbers, representing signed binary numbers using the 2's complement method, performing basic mathematical operations using binary numbers (addition, subtraction, multiplication, division), analytic design of adder circuits, modular design of adder circuits, carry-look ahead circuit, subtractor circuit, magnitude comparator circuit, precision and overflow issues.
Standardized Logic Circuits: Description and design of standardised circuits such as decoders / encoders, multiplexers / demultiplexers, code converters, magnitude comparators and digital displays. Use of standardised logic circuits as building blocks for modular design purposes.

	Sequential Circuit Design: Introduction to circuits with memory, sequential circuits as a special type of circuits with memory, clocked operation of circuits, description and operation of basic latches (D, SR) and flip-flops (D, JK, T), propagation delay, setup time, and hold time in latches and flip-flops. Fundamental applications of circuits with memory, including serial registers, parallel register, shift registers, asynchronous (ripple) counters and synchronous counters. The synchronous counter design process. Memory: Introduction to digital memory terminology, basic operation of a memory, RAM memory and types (SRAM and DRAM), ROM memory and types.		
Teaching Methodology	Face- to- face		
Bibliography	"Digital Systems: Principles \& Applications" by Ronald J. Tocci, Neal S. Widmer, and Greg Moss "Digital Design: With an Introduction to the Verilog HDL, VHDL, and SystemVerilog" by M. Morris R. Mano, and Michael D. Ciletti "Fundamentals of Digital Logic with VHDL Design", by Stephen Brown and Zvonko Vranesic "Digital Fundamentals", by Thomas L. Floyd "Digital Logic Design", by B. Holdsworth		
Assessment			
			Examinations 70\%
			Assignments/Lab 20%
			Class Participation and 10% Attendance
			100\%
Language	English		

