
Course Title Compilers Design

Course Code CSE420

Course Type Compulsory

Level Bachelor (1st Cycle)

Year / Semester 4th Year / 7th Semester

Teacher’s Name TBA

ECTS 6 Lectures / week 2 hours/
14 weeks

Laboratories /
week

1 hour/ 14 weeks

Course Purpose
and Objectives

To provide knowledge on the structure of Compilers and language translation,
terminology in programming analysis, lexical analysis, regular expressions and
finite-state techniques. language translation, context free languages, LL and LR
parsing methods, syntax directed translation, error recovery, code generation,
and portability

Learning
Outcomes

Upon successful completion of the course, students will be able to:

 Apply basic theoretical principles of compiler design.
 Explain and compare basic parsing techniques.
 Design basic theoretical machines for compilers.
 Describe and compare Run-time Environments: source language

issues, storage organization and allocation.
 Describe and compare principle sources of optimization.

Prerequisites CSE200, CSE210 Co-requisites None

Course Content Introduction to compilers:

Compilers and translators; the structure of a compiler; lexical analysis; syntax
analysis; intermediate code generation; optimization code generation; error
handling; compiler-writing tools.

Programming languages: Definition of programming languages; the lexical and
syntactic structure of a language data elements; data structures; operators
assignment; statements; program units; data environments; parameter
transmission storage management.

Finite automata and lexical analysis: The role of lexical analyzer; a simple
approach to design of lexical analyzers; regular expressions; finite automata;
implementation of lexical analyzer.

The syntactic specification of programming languages. Context free grammars;
derivatives and parse trees; capabilities of context free grammars.

Basic parsing techniques. Parsers; shift-reduce parsing; operator parsing; top
down parsing; predictive parsers.

Syntax directed translation. Syntax directed translation schemes; intermediate
code; postfix notation; parse trees and syntax trees; translation of assignment

statements; Boolean expressions; postfix translations; translation with a
top-down purser.

More about translation. Array references in arithmetic expressions; procedure
calls; declarations.

Symbol tables. The contents of a symbol table; data structures of symbol tables;
representation scope information.

Error detection recovery. Code optimization and code generation. The principal
source of optimization; object programs; problems in code generation; a simple
code generator.

Recent developments and contemporary issues pertaining to the subject-
matter of the course.

Teaching
Methodology

Face- to- face

Bibliography Alfred V. Aho, Monica S. Lam, Jeffrey D. Ullman and Ravi Sethi,
COMPILERS: PRINCIPLES, TECHNIQUES, AND TOOLS, Pearson.
Aho/Ullman, PRINCIPLES OF COMPILER DESIGN, Addison-Wesley

Muchnick, ADVANCED COMPILER DESIGN & IMPLEMENTATION, Morgan
Kaufman

Weing, F.W., TRANSLATION OF COMPUTER LANGUAGES, Prentice Hall

Assessment

Mid – Term Examination 25%
Final Examination 45%
Assignments/Lab 20%
Class Participation and Attendance 10%
 100%

Language English

