Course Title	Algorithms						
Course Code	CSE415						
Course Type	Compulsory						
Level	Bachelor (1st Cycle)						
Year / Semester	4 th Year / 8 nd Semester						
Teacher's Name	ТВА						
ECTS	6	Lectures / v	week	3 hours / 14 weeks	Laboratories / week	None	
Course Purpose and Objectives	This course is about the design and analysis of algorithms for computational problems, and how to think clearly about analyzing correctness and running time. The objective of this course is to provide the intellectual tools needed for designing and analyzing algorithms for new problems the students may face in the future. Specific algorithms for a variety of problems will be studied, such as greedy techniques, divide-and-conquer, randomized algorithms, dynamic programming, and others, as well as general design and analysis techniques.						
Outcomes	 Explain and use fundamental algorithms and algorithmic techniques. Explain the use of big-O, Omega, and Theta notation to describe the amount of work done by an algorithm, and apply them to provide tight bounds on algorithmic complexity. Create correctness proofs and estimate the running time of a given algorithm. Discuss factors other than computational efficiency that influence the choice of algorithms, such as programming time, maintainability, and the use of application-specific patterns in the input data. Design new algorithms for specific applications, using the algorithms and algorithmic techniques presented. 						
Prerequisites	CSE400		Co-re	equisites	None		
Course Content	 Analysis framework: O, Θ, Ω notations Mathematical analysis: nonrecursive and recursive algorithms. Graphs, trees and their properties. Breadth- and depth-first search in graphs, topological sort, recurrences. Divide-and-conquer: Multiplication of Large Integers and Strassen's Matrix Multiplication, Closest-Pair and Convex-Hull Problems by Divide-and-Conquer 						

	Brute Force and Exhaustive Search: Selection Sort and Bubble Sort.				
	Sequential Search and Brute-Force String Matching. Exhaustive Search, Traveling Salesman Problem, Knapsack Problem, Assignment Problem, Depth-First Search and Breadth-First Search.				
	Sorting and Selection:				
	Randomization, Median Finding, Quick Sort, Radix Sort, selection, Lower Bound for Sorting				
	Greedy technique:				
	Huffman's Codes, Minimum Spanning Tree algorithms: Kruskal's Algorithm, Prim's Algorithm, single pair Shortest Paths algorithm: Dijkstra's Algorithm				
	Dynamic Programming:				
	Single Source Shortest Path algorithms: Warshall's and Floyd's Algorithms, Knapsack Problem, Optimal Binary Search Trees, The Knapsack Problem and Memory Functions				
	Amortized Analysis:				
	Aggregate Method, Accounting Method, Potential Method, Dynamic Tables				
	Iterative Improvement:				
	The Simplex Method, the Maximum-Flow Problem (Ford-Fulkerson method), Maximum Matching in Bipartite Graphs, the Stable Marriage Problem				
	Limitations of Algorithm Power:				
	Lower-Bound Arguments, Decision Trees, P, NP, and NP-complete Problems, approximation algorithms				
	Coping with the Limitations of Algorithm Power:				
	Backtracking, Branch-and-Bound, Approximation Algorithms for NP-hard Problems (Vertex-cover problem, the traveling salesman problem, the set- cover problem, the vertex-coloring problem).				
Teaching Methodology	Face- to- face				
Bibliography	Anany V. Levitin,INTRODUCTION TO THE DESIGN AND ANALYSIS OF ALGORITHMS, Addison Wesley				

	T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, INTRODUCTION TO ALGORITHMS, MIT Press				
	S. Dasgupta, C. Papadimitriou, U. Vazirani, ALGORITHMS,				
	McGraw-Hill				
	Jon Kleinberg and Éva Tardos. ALGORITHM DESIGN. Addison-Wesley.				
	R. Johnsonbaugh, M. Schaefer, ALGORITHMS, Prentice Hall				
Assessment					
	Mid – Term Examination25%Final Examination40%Assignments/Lab20%Class Participation and Attendance10%100%100%				
Language	English				