Course Title	Graph Theory and Applications in Networks					
Course Code	CSE414					
Course Type	Elective					
Level	Bachelor (1st Cycle)					
Year / Semester	4 th Year / 8 nd Semester					
Teacher's Name	ТВА					
ECTS	6	Lectures / v	veek	3 hours / 14 weeks	Laboratories / week	N/A
Course Purpose and Objectives	The course objective is to provide an introduction to the theory of graphs. The course starts from basic definitions and examples and moves to cover a broad range of topics. Applications of Graph Theory in Computer Science will be discussed throughout. Emphasis will be given to reading, understanding and developing graph theoretical proofs. Topics include: degrees, paths, trees, cycles, Eulerian circuits, bipartite graphs, extremality, matchings, connectivity, network flows, vertex and edge colorings, Hamiltonian cycles and planarity.					
Learning	 Upon successful completion of the course, students will be able to: Model problems in computer science using graphs and trees. Describe precise and accurate mathematical definitions of objects in graph theory; Validate and critically assess a mathematical, graph-theoretical proof; Formulate mathematical, graph-theoretical proofs based on definitions; Write about graph theory in a coherent and technically accurate manner. 					
Outcomes	• M tı • E • V tl • V d • V a	Model proble rees. Describe preco objects in gra /alidate and heoretical pro formulate ma lefinitions; Vrite about g iccurate man	ms in cise ar ph the critic pof; thema graph ner.	computer s nd accurate ory; sally assess atical, graph- theory in a	science using g mathematical de a mathematica theoretical proofs coherent and t	raphs and finitions of al, graph- s based on technically
Outcomes	• M ti • C • V • V • V • V • V • V • V	Aodel proble rees. Describe preco objects in gra /alidate and heoretical pro formulate man lefinitions; Vrite about g occurate man	ms in bise ar ph the critic pof; thema graph ner. Co-re	computer s nd accurate ory; ally assess atical, graph- theory in a	science using gr mathematical de a mathematical theoretical proofs coherent and the None	raphs and finitions of al, graph- s based on technically

	Trees, Application: planning an efficient road network. Definition of trees. Properties of trees: number of edges and vertices, degree of vertices, cut edges. Spanning trees. Kruskal's algorithm.
	Connectivity, Cayley's formula, Cut vertices, vertex cuts, edge cuts. Blocks; the block detection algorithm challenge. Connectivity and edge-connectivity. Application: designing resilient computer networks.
	Euler tours and Chinese postmen The seven bridges of Königsberg Conditions for Eulerian graphs. The Chinese postman problem, Fleury's algorithm, Hamilton paths.
	Matchings and coverings, Matches, perfect matches, matches in bipartite graphs, Personnel assigment problem, Hall's theorem. The marriage theorem. The Gale-Shapley algorithm.
	Connectivity and Paths, Cuts and Connectivity, k-connected Graphs, Network Flow Problems
	Graph Coloring, Vertex Colorings, Upper Bounds, Brooks' Theorem, k-chromatic Graphs, Perfect Graphs.
	Edges and Cycles, Line Graphs and Edge-coloring, Proper colourings, edge chromaticity. Hamiltonian Cycles
	Planar Graphs, Embeddings and Euler's Formula, Drawings in the Plane, Dual Graphs, Characterization of Planar Graphs, Parameters of Planarity
Teaching Methodology	Face- to- face
Bibliography	Douglas B West, Introduction To Graph Theory, 2nd edition, Prentice Hall.
	Geir Agnarsson, Graph Theory: Modeling, Applications, and Algorithms, Pearson.
	Raymond Greenlaw,Robin J. Wilson, Introduction to Graph Theory, Pearson.
	Reinhard Diestel, Graph Theory. Springer-Verlag.

	Graph Theory with Applications to Engineering and Computer Science, Dover publications.				
Assessment	Mid – Term Examination Final Examination Assignments/Lab Class Participation and attendance	30% 45% 15% 10% 100%			
Language	English				