
Course Title Software Engineering II

Course Code CSE410

Course Type Compulsory

Level Bachelor (1st Cycle)

Year / Semester 4th year / 7th semester

Teacher’s Name TBA

ECTS 6 Lectures / week 3 hours /
14 weeks

Laboratories /
week

N/A

Course Purpose
and Objectives

To complement and complete the first part of software engineering. This
course includes the design, programming and implementation of a software
system. It completes the software life cycle and provides the student with
practical experience in large systems development. The student will also gain
practical experience in developing technical manuals to be used by systems
administrators, and user manuals to be utilized in training sessions and as
references by potential users of the system.

Learning
Outcomes

After the completion of this course the student should be able to:

 Carry out coding based on the design specification document
 Describe the fundamental software testing concepts
 Describe test methodologies and reporting strategies
 Design and execute effective software test cases
 Construct automated test cases and validate them
 Construct user and technical manuals

Prerequisites CSE325 Co-requisite None

Course Content Review and elaboration of the Software Requirements Specification
document.

User-Interface Design

Types of user interaction, information presentation. The User-Interface
Design process: user analysis, user interface prototyping, interface
evaluation.

Implementation

Mapping design models to code, refactoring, forward engineering, reverse
engineering, using API’s to increase coding performance and software
reliability.

Software Testing

Measure software quality and testing benefits. Testing concepts: errors,
bugs, defects. Types of testing: white-box testing, black-box testing, unit
testing, integration testing, functional, performance structural, regression,

security, stress, accessibility, usability and localization testing. User Centric
Testing: Business need and issues, customer requirements and scenarios.

Test-driven development

Test schedule, scope, methodology, scenarios and tools. Manual Testing,
Automated Testing, Test cases: Boundary conditions, level of detail, validity.
Stubs, drivers. Equivalence partitioning. Debugging. Testing milestones:
Process fundamentals, exit criteria and sign off. Test reports: Status reports,
appropriate recipients. Bug logs and bug management.

Automated Testing

Test automation: Benefits, candidates for automation and automation
process. Test automation strategies: Code coverage, logging and
automation priority. Automation tests: Logic, error handling, commenting
and virtual machines. Test scripts: Smoke test, build verification test and lab
management

Documentation

Writing user and technical manuals.

Teaching
Methodology

Face – to – face

Bibliography Sommerville Ian, SOFTWARE ENGINEERING, Addison-Wesley

Pressman Roger, S., SOFTWARE ENGINEERING: A PRACTIONERS
APPROACH, McGraw Hill

Bruegge, B. and Dutoit, A.H., OBJECT-ORIENTED SOFTWARE
ENGINEERING USING UML, PATTERNS AND JAVA, Pearson Prentice Hall

Assessment

Final Examination 50%
Project 40%
Class Participation and
Attendance

10%

 100%

Language English

