Course Title	Theory of Computation				
Course Code	CSE400				
Course Type	Compulsory				
Level	Bachelor (1st Cycle)				
Year / Semester	4 th Year / 7 st Semester				
Teacher's Name	ТВА				
ECTS	6	Lectures / wee	k 3 Hours/ 14 weeks	Laboratories / week	N/A
Course Purpose and Objectives	Introduce students to the mathematical foundations of computation including automata theory; the theory of formal languages and grammars; the notions of algorithm, decidability, complexity, and computability. Enhance/develop students' ability to understand and conduct mathematical proofs for computation and algorithms.				
Learning Outcomes	 Upon successful completion of the course, students will be able to: Describe and explain the operation and limitations of various computational models. Analyse and design models of Deterministic and Non-Deterministic Finite Automatons, Push-Down Automatons for various languages Apply various forms of the pumping lemma in proofs. Analyse and design models of Turing Machines for computational problems Define the classes P, NP and describe NP-completeness Explain and use polynomial time reductions Explain key notions, such as algorithm, computability, decidability, and complexity through problem solving. Prove the basic results of the Theory of Computation. 				
Prerequisites	CSE200	С	o-requisites	None	

Course Content	Review:				
	Basic algebraic concepts: sets, functions, mappings, binary operators, relations, partially ordered sets, equivalence classes. Introduction to alphabets and languages				
	Finite Automata:				
	Deterministic finite automata, Non-Deterministic finite automata. Equivalence of Deterministic and non-deterministic finite automata. Properties of languages accepted by finite automata, finite automata and regular expressions. Regular and non-regular languages (proof). Reduction of number of states in finite automata. Pushdown automata.				
	Languages and Grammars:				
	Properties of regular grammars and languages, The pigeonhole principle, A pumping Lemma. Context-free languages, derivation trees, pushdown automata and context-free grammars. Closure, periodicity, algorithmic properties. Transformation of grammars (Useless Productions, lambda, unit productions), Normal forms (Chomsky, Greibach), membership.				
	Turing Machines:				
	Definition, computing with Turing machines, Turing mach extensions, Nondeterministic Turing machines, Church-Tur Thesis. Definition of "algorithm"				
	Decidability:				
	Decidable languages, the halting problem				
	Reducibility: Undecidable problems in language theory, a simple undecidable problem, mapping reducibility				
	Computational Complexity: Measuring complexity, The class P, the class NP, NP-completeness, NP-complete problems				
Teaching Methodology	Face- to- face				
Bibliography	phy Sipser, M., INTRODUCTION TO THE THEORY OF COMPUTATION PWS Publishing Company				
	John C. Martin, INTRODUCTION TO LANGUAGES AND THE THEORY OF COMPUTATION, McGraw-Hill,				

	Lewis, R., Papadimitriou H., ELEMENTS OF THE THEORY OF COMPUTATION, Prentice-Hall Hopcroft J., Motwani R., Ullman J., INTRODUCTION TO AUTOMATA THEORY, LANGUAGES, AND COMPUTATION, Addison-Wesley				
	D. I. A. Cohen, INTRODUCTION TO COMPUTER THEORY,				
	2nd Ed., Wiley, 1997				
Assessment					
	Mid – Term Examination	25%			
	Final Examination	45%			
	Assignments/Lab	20%			
	Class Participation	10%			
		100%			
Language	English				