
Course Title Algorithms & Complexity

Course Code CSC662

Course Type Elective

Level Master (2nd cycle)

Year / Semester 2nd year / 1st semester

Teacher’s Name TBA

ECTS 10 Lectures / week 3 hours /
14 weeks

Laboratories /
week

N/A

Course Purpose
and Objectives

 The first part of the cource introduce the students to the design and analysis
of algorithms for computational problems, and how to think clearly about
analyzing correctness and running time. The objective of the first part of the
course is to provide the intellectual tools needed for designing and analyzing
algorithms for new problems the students may face in the future. Specific
algorithms for a variety of problems will be studied, such as greedy
techniques, divide-and-conquer and others, as well as general design and
analysis techniques.

The second part of the course includes advanced techniques in the design
and analysis of algorithms. The algorithms are presented using a rigorous
analytical style. We will be emphasizing various algorithmic paradigms such
as dynamic programming, network flows, linear programming and rounding,
randomized algorithms, local search and multiplicative weights update and
NP and intractability. These techniques will be applied to a wide variety of
(well motivated) discrete computational problems with a focus on
combinatorial optimization.

Learning
Outcomes

After competing this course students should be able to:

 Explain, use and discuss fundamental algorithms and algorithmic
techniques.

 Explain the use of big-O, Omega, and Theta notation to describe
the amount of work done by an algorithm, and apply them to
provide tight bounds on algorithmic complexity.

 Create correctness proofs and estimate the running time of a
given algorithm.

 Discuss factors other than computational efficiency that influence
the choice of algorithms, such as programming time,
maintainability, and the use of application-specific patterns in the
input data.

 Describe and discuss the basic idea behind the techniques, so that
to be are able to develop algorithms for new problems where these
techniques can be applied.

 Describe and apply the algorithms discussed in class, prove their
correctness, and analyze their time complexity in a mathematically
rigorous manner.

 Given a practical application, identify the computational issues
and apply suitable algorithms to solve it effectively.

 Identify, describe and use NP-complete problems

 Discuss various issues on computability and complexity theory.

 Prove a problem is NP-complete using reduction and identify the
implications.

Prerequisites CSC615 Co-requisites None

Course Content Analysis framework: O, Θ, Ω notations Mathematical analysis: nonrecursive
and recursive algorithms. Graphs, trees and their properties. Breadth- and
depth-first search in graphs, topological sort, recurrences.

Divide-and-conquer: Multiplication of Large Integers and Strassen’s Matrix
Multiplication, Closest-Pair and Convex-Hull Problems by Divide-and-
Conquer.

Sorting and Selection: Randomization, Median Finding, Quick Sort, Radix
Sort, selection, Lower Bound for Sorting

Greedy technique: Huffman's Codes, Minimum Spanning Tree algorithms:
Kruskal's Algorithm, Prim's Algorithm, single pair Shortest Paths algorithm:
Dijkstra's Algorithm.

Scheduling to Minimize Lateness: An Exchange Argument, The Minimum
Spanning Tree Problem, Huffman Codes and the Problem of Data
Compression

Dynamic Programming: Single Source Shortest Path algorithms: Warshall’s
and Floyd’s Algorithms, Knapsack Problem, Optimal Binary Search Trees,
The Knapsack Problem and Memory Functions

Iterative Improvement: The Simplex Method, the Maximum-Flow Problem
(Ford-Fulkerson method), Maximum Matching in Bipartite Graphs, the Stable
Marriage Problem

Dynamic Programming: Weighted Interval Scheduling: A Recursive
Procedure, Weighted Interval Scheduling: Iterating over Sub-Problems,
Segmented Least Squares: Multi-way Choices, Subset Sums and

Knapsacks: Adding a Variable, Shortest Paths in a Graph, Shortest Paths and
Distance Vector Protocols, Negative Cycles in a Graph.

Network Flow: Maximum Flows and Minimum Cuts in a Network, Disjoint
Paths in Directed and Undirected Graphs, Airline Scheduling.

NP and Computational Intractability: Polynomial-time Reductions,
Efficient Certification and the Definition of NP, NP-Complete Problems,
Sequencing Problems, Partitioning Problems, Graph Coloring, Numerical
Problems, co-NP and the Asymmetry of NP, A Partial Taxonomy of Hard
Problems

Extending the Limits of Tractability: Finding Small Vertex Covers, Solving
NP-hard Problem on Trees, Coloring a Set of Circular Arcs.

Local Search: The Landscape of an Optimization Problem. The Metropolis
Algorithm and Simulated Annealing. An Application of Local Search to
Hopfield Neural Networks. Maximum Cut Approximation via Local Search

Approximation Algorithms: Greedy Algorithms and Bounds on the
Optimum: A Load Balancing Problem, the Vertex-cover problem, the traveling
salesman problem, the set-cover problem, the vertex-coloring problem. The
Center Selection Problem, the Set Cover.

The Pricing Method: Vertex Cover. Linear Programming and Rounding: An
Application to Vertex Cover.

Teaching
Methodology

Face-to-Face

Bibliography Jon Kleinberg and Éva Tardos. Algorithm Design. Addison-Wesley.

S. Dasgupta, C. Papadimitriou, U. Vazirani,ALGORITHMS, McGraw-Hill.

T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein
INTRODUCTION TO ALGORITHMS, MIT Press.

R. Johnsonbaugh, M. Schaefer, ALGORITHMS, Prentice Hall

Sanjeev Arora and Boaz Barak, Computational Complexity, A Modern
Approach, Cambridge University Press

Assessment
Examinations 60%
Assignments 30%
Class participation and Attendance 10%
 100%

Language English

