Course Title	Algorithms & Complexity					
Course Code	CSC662					
Course Type	Elective					
Level	Master (2 nd cycle)					
Year / Semester	2 nd year / 1 st semester					
Teacher's Name	ТВА					
ECTS	10	Lectures / week	3 hours / 14 weeks	Laboratories / week	N/A	
Course Purpose and Objectives	 Ine first part of the cource introduce the students to the design and analysis of algorithms for computational problems, and how to think clearly about analyzing correctness and running time. The objective of the first part of the course is to provide the intellectual tools needed for designing and analyzing algorithms for new problems the students may face in the future. Specific algorithms for a variety of problems will be studied, such as greedy techniques, divide-and-conquer and others, as well as general design and analysis techniques. The second part of the course includes advanced techniques in the design and analysis of algorithms. The algorithms are presented using a rigorous analytical style. We will be emphasizing various algorithmic paradigms such as dynamic programming, network flows, linear programming and rounding, randomized algorithms, local search and multiplicative weights update and NP and intractability. These techniques will be applied to a wide variety of (well motivated) discrete computational problems with a focus on combinatorial optimization. 					
Learning Outcomes	 After competing this course students should be able to: Explain, use and discuss fundamental algorithms and algorithmic techniques. Explain the use of big-O, Omega, and Theta notation to describe the amount of work done by an algorithm, and apply them to provide tight bounds on algorithmic complexity. Create correctness proofs and estimate the running time of a given algorithm. Discuss factors other than computational efficiency that influence the choice of algorithms, such as programming time, maintainability, and the use of application-specific patterns in the input data. Describe and discuss the basic idea behind the techniques, so that to be are able to develop algorithms for new problems where these techniques can be applied. 					

	 Describe and all correctness, and rigorous manne Given a practic and apply suital Identify, describ Discuss various Prove a probler implications. 	 Describe and apply the algorithms discussed in class, prove their correctness, and analyze their time complexity in a mathematically rigorous manner. Given a practical application, identify the computational issues and apply suitable algorithms to solve it effectively. Identify, describe and use NP-complete problems Discuss various issues on computability and complexity theory. Prove a problem is NP-complete using reduction and identify the implications. 		
Prerequisites	CSC615	Co-requisites	None	
Course Content	 Analysis framework: O, G and recursive algorithms. depth-first search in graphs Divide-and-conquer: Multi Multiplication, Closest-Pai Conquer. Sorting and Selection: R Sort, selection, Lower Bourd Greedy technique: Huffm Kruskal's Algorithm, Prim's Dijkstra's Algorithm. Scheduling to Minimize La Spanning Tree Problem, Compression Dynamic Programming: S and Floyd's Algorithms, K The Knapsack Problem an Iterative Improvement: T (Ford-Fulkerson method), I Marriage Problem Dynamic Programming: Procedure, Weighted Interview 	b, Ω notations Mathem Graphs, trees and the s, topological sort, rec tiplication of Large Inte ir and Convex-Hull andomization, Mediar nd for Sorting an's Codes, Minimum s Algorithm, single pa ateness: An Exchang Huffman Codes a Single Source Shortest napsack Problem, Op d Memory Functions he Simplex Method, t Maximum Matching in Weighted Interval erval Scheduling: Ite	nplete problems tability and complexity theory. using reduction and identify the None nematical analysis: nonrecursive their properties. Breadth- and recurrences. Integers and Strassen's Matrix full Problems by Divide-and- dian Finding, Quick Sort, Radix num Spanning Tree algorithms: e pair Shortest Paths algorithm: ange Argument, The Minimum s and the Problem of Data rtest Path algorithms: Warshall's , Optimal Binary Search Trees, ns od, the Maximum-Flow Problem g in Bipartite Graphs, the Stable val Scheduling: A Recursive Iterating over Sub-Problems, Choices, Subset Sums and	

	Knapsacks: Adding a Variable, Shortest Paths in a Graph, Shortest Paths and Distance Vector Protocols, Negative Cycles in a Graph.			
	Network Flow: Maximum Flows and Minimum Cuts in a Network, Disjoint Paths in Directed and Undirected Graphs, Airline Scheduling.			
	NP and Computational Intractability: Polynomial-time Reductions, Efficient Certification and the Definition of NP, NP-Complete Problems, Sequencing Problems, Partitioning Problems, Graph Coloring, Numerical Problems, co-NP and the Asymmetry of NP, A Partial Taxonomy of Hard Problems			
	Extending the Limits of Tractability: Finding Small Vertex Covers, Solving NP-hard Problem on Trees, Coloring a Set of Circular Arcs.			
	Local Search: The Landscape of an Optimization Problem. The Metropolis Algorithm and Simulated Annealing. An Application of Local Search to Hopfield Neural Networks. Maximum Cut Approximation via Local Search			
	Approximation Algorithms: Greedy Algorithms and Bounds on the Optimum: A Load Balancing Problem, the Vertex-cover problem, the traveling salesman problem, the set-cover problem, the vertex-coloring problem. The Center Selection Problem, the Set Cover.			
	The Pricing Method: Vertex Cover. Linear Programming and Rounding: An Application to Vertex Cover.			
Teaching Methodology	Face-to-Face			
Bibliography	Jon Kleinberg and Éva Tardos. Algorithm Design. Addison-Wesley.			
	S. Dasgupta, C. Papadimitriou, U. Vazirani,ALGORITHMS, McGraw-Hill.			
	T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein INTRODUCTION TO ALGORITHMS, MIT Press.			
	R. Johnsonbaugh, M. Schaefer, ALGORITHMS, Prentice Hall			
	Sanjeev Arora and Boaz Barak, Computational Complexity, A Modern Approach, Cambridge University Press			

Assessment	Examinations Assignments Class participation and Attendance	60% 30% 10% 100%	
Language	English		