
Course Title Software Engineering

Course Code CSC650

Course Type Compulsory

Level Master (2nd Cycle)

Year / Semester 2nd year / 1st semester

Teacher’s Name TBA

ECTS 10 Lectures / week 3 Hours /
14 week

Laboratories /
week

N/A

Course Purpose
and Objectives

A first objective of this course is to introduce students to the principles of
Information Systems (IS). Traditional and novel systems’ development
methodologies are described and their basic characteristics are compared.
Students learn how to apply the modeling tools of systems’ development
methodologies in realistic development cases.

The course continues with discussion on the underlying process of the issues
involved in the analysis of a system, the identification of the problem areas
and the development of alternative solutions. A key objective of the first part
of the course is the production of the Software Requirements Specification
document which will be used in a later course as the base of the design and
development of a software system.

The second part of the course concerns the design, programming and
implementation of a software system. It completes the software life cycle and
provides the student with practical experience in large systems development.
The student will also gain practical experience in developing technical
manuals to be used by systems administrators, and user manuals to be
utilized in training sessions and as references by potential users of the
system.

It also introduce the students to the Project Management: how to manage
teams; PM and team roles; requirement specification; task allocation;
scheduling and planning.

Finally, the course also aims to encourage students to think critically about
the applicability of existing and emerging technologies and research on a
number advanced topics in software engineering.

Learning
Outcomes

Upon successful completion of this course student will be able to:

 Describe the principles of Software Engineering and the main
software development process models

 Elicit and analyze requirements for a software development project

 Construct the software requirements specification document

 Create design model representations of software data, architectures,
components and interfaces

 Construct the software design specification document

 Carry out coding based on the design specification document

 Describe any apply non-functional requirements modelling and
validation

 Demonstrate knowledge of contemporary software engineering
methods and the relationship between software and systems
engineering.

 Describe, discuss and compare various architectural models and
contemporary software engineering methods

 Describe and apply component-based and service-oriented
architectures as platforms for software reuse.

 Describe the fundamental software testing concepts

 Design and execute effective software test cases

 Construct user and technical manuals

 Plan, schedule and control a software development project

 Measure software at different dimensions

Prerequisites CSC635 Co-requisites None

Course Content System Analysis and Design:

Data Modeling: Introduction to data modeling, entities, attributes,
relationships, the process of logical data modeling, analyzing the data model,
normalization.

Process Modeling: Process concepts, data flows, external agents, data
stores, the process of logical process modeling, how to construct process
models, the context data flow diagram, the functional decomposition diagram,
the event response list, system and primitive diagrams, synchronizing of
system models.

Systems Design: Modern Structured Design, Information Engineering (IE),
Prototyping, Joint Application Development (JAD), Rapid Application
Development (RAD), Object-Oriented Design (OOD), FAST Systems Design
Methods.

 Software Engineering:

What is Software Engineering? The need for software engineering. Software
characteristics, components and applications. Software reliability, software
reuse, Software process models: waterfall model, incremental model,
prototyping, RAD model, spiral model, Rational Unified Process.
Systems concepts, boundaries, environment, inputs, outputs, characteristics
of systems.
From software to Systems engineering. Socio-technical and safety critical
systems. Security in systems engineering, project and risk management in
systems engineering

Software Requirements engineering:

Problem definition, feasibility study, requirements elicitation, requirements
analysis, requirements negotiation, requirements specification, requirements
management

Software Requirements elicitation:
Requirements elicitation techniques: interviews, scenarios, use cases.

Software Analysis models:
Scenario-based models, object models, data models, information flow
models, behavioral models.

The need for better nonfunctional requirements management
Elaborate and demonstrate benefits of the goal oriented approaches, the
agent oriented approaches. Methods for validating NFRs

Software Architecture:
Software Analysis models:
Scenario-based models, object models, data models, information flow
models, behavioral models.
Distributed systems architectures, Real-time software design, Concurrency
modeling. The model driven architecture

Object-Oriented analysis:
Unified Modeling Language. UML diagrams: class/object diagrams, activity
diagrams, swimlane diagrams, sequence diagrams, state diagrams.

Service Oriented Software Engineering:
Composition of reusable services provided by service providers. Service
orchestration

Pattern oriented software engineering:
Demonstrate the use of high–level architectural patterns and medium–level
design patterns to low–level idioms. Patterns and reusability.

Aspect oriented software engineering:
Identification, modularisation, representation and composition of crosscutting
concerns (the aspects) throughout the software life cycle

Coding:
Mapping design models to code, refactoring, forward engineering, reverse
engineering, using API’s to increase coding performance and software
reliability.

Software Testing:
Testing concepts: errors, bugs, defects. Types of testing: white-box testing,
black-box testing, unit testing, integration testing, regression testing,
acceptance testing. Test cases. Stubs, drivers. Equivalence partitioning.
Debugging.

Documentation:
Writing user and technical manuals. Software Measurement
Software measurement in theory and practice, Software costing, software
quality assurance.

Project Management:

Management activities, project planning, project scheduling, Managing
teams, the team leader. Task definition, work allocation. PERT diagrams,
GANTT diagrams, the Critical Path Method (CPM). Risk management, quality
management, configuration management, process improvement activities

Estimation:
Estimating effort, time and cost. Human, Hardware and Software resources,
Software productivity metrics. Cost estimation techniques.

Recent developments and contemporary issues pertaining to the subject-
matter of the course.

Teaching
Methodology

Face-to-Face

Bibliography Sommerville, Ian, SOFTWARE ENGINEERING, Addison-Wesley

Whitten and Bentley, SYSTEMS ANALYSIS AND DESIGN METHODS,
McGraw Hill.

Pressman, Roger, SOFTWARE ENGINEERING (A Practitioners
Approach), Prentice - Hall

Bruegge, B. and Dutoit, A.H., OBJECT-ORIENTED SOFTWARE
ENGINEERING USING UML, PATTERNS AND JAVA, Pearson Prentice
Hall

Maciaszek, L.A. and Liong, B.L., PRACTICAL SOFTWARE
ENGINEERING, A CASE STUDY APPROACH, Addison-Wesley

Rumbaugh J., Jacobson, I., and Booch, G., THE UNIFIED MODELING
LANGUAGE REFERENCE MANUAL

Assessment
Final examination 50%
Project 40%
Class participation and Attendance 10%
 100%

Language English

