
Course Title Introduction to Programming and Object Orientation

Course Code CSC600

Course Type Compulsory

Level Master (2nd Cycle)

Year / Semester 1st year / 1st semester

Teacher’s Name TBA

ECTS 10 Lectures / week 3 Hours /
14 weeks

Laboratories /
week

N/A

Course Purpose
and Objectives

The course aims to Introduce students to basic concepts of the computer
science discipline from theoretical concepts and areas of study to the role of
computer scientists in today's society.

A primary objective of the course is to introduce fundamental ideas of problem
solving and structured programming, using the principles of top-down design,
stepwise refinement and procedural abstraction.

Additionally, the course will introduce object oriented programming as a
modelling tool. Object orientation principles and common practices will be
delivered thus enabling the student to be able to create their own data types.

Learning
Outcomes

Upon successful completion of this course student will be able to:

 Describe and discuss the key theoretical concepts of the Computer
Science discipline. List the key areas of study in Computer Science
and discuss their interrelationships.

 State the importance of the Computer Science discipline. Argue about
the role and ethical responsibility of Computer Scientists in our
society.

 Define and choose and use suitable primitive data types in basic
statements and write programs containing selection and repetition
control constructs.

 Specify and implement functions and use them as an abstraction
mechanism to modularize a programmatic solution.

 Declare, initialize and manipulate arrays and pointers. Build relatively
simple programs utilizing arrays and pointers.

 Create and manipulate classes and instance objects. Define data
attributes, get and set functions and constructors.

 Design and build hierarchy of classes in order to model and solve
problems.

Prerequisites None Co-requisites None

Course Content Introduction to Computer Science

The Computer Scientist:

Describe the main Computer Science fields of study and related careers.
Understand what is needed by a Computer Science student in order to
become a professional Computer Scientist. Understand the ethical
responsibilities of Computer Scientists. Comprehend the difference between
a computer scientist and a computer programmer, software engineer,
information scientist, etc.

Computer Science concepts (information representation):

Understand the main information representation methodologies used in
modern computing systems. Understand how binary values are used to
represent numbers, text, audio and video information.

Computer Science concepts (hardware):

Learn about the basic low-level and high-level components employed for the
implementation of computing functions. Logic gates, Von Neumann
architecture, storage devices.

Computer Science concepts (areas)

Discuss the areas of computer science and explain how they inter-operate
to produce results. Briefly introduce: programming, algorithms, operating
systems, databases and information systems. software engineering, data
communication and networking.

Programming principles

Computer Science concepts (programming):

Understand the concepts of programming and programming languages.
Define the difference between interpretation and compilation. Understand
the difference between low-level and high-level programming languages.

Introduction To Programming: Primitive data types and variable definition.
Basic input output statements, formatting program output, arithmetic
operators, compound assignment operators, order of precedence. Writing,
compiling and executing a simple computer program.

Conditionals, logical operators, Control Structures: <if> <if/else> <switch>.
Repetition Structures: <for> <while>; the break and continue statements.

Functional abstraction. Function definitions and prototypes, arguments and
parameter passing. Scope and duration of variables. Passing by value or
reference. Returning values from functions. Argument promotion and
casting. Function overloading.

Arrays: Introduction to arrays, array declaration and allocation, initializing
array elements, accessing array elements, manipulation of arrays, passing
arrays to functions. Characters & strings, string manipulation functions,
variable size strings.

Pointers (if applicable): Pointer variables, working with pointers, pointer
operators and pointer arithmetic. Calling functions by reference. Using
pointers in place of arrays. Pointers to pointers, 2D arrays using pointers.
Arrays of pointers; pointers to functions.

Problem Solving: Representing and refining algorithms, using Sub-programs
for sub-problems, decision steps in algorithms, tracing a program on
algorithm, problem solving strategies, generalizing a solution, debugging
and testing programs, common programming errors.

Object Orientation

Introduction to objects and object-oriented design, classes, constructors,
overloaded constructors, get and set methods, class-wide variables, class
scope, data abstraction and encapsulation. Class composition

Inheritance and Polymorphism: super/base classes and sub/derived
classes, inheritance, polymorphism, overriding. Creating hierarchies of
classes and using them to describe real life problems/situations.

Teaching
Methodology

Face-to-Face

Bibliography Dale N. and Lewis J.; COMPUTER SCIENCE ILLUMINATED; Jones
& Bartlett Learning

 Deitel P.J and Deitel H.; C, HOW TO PROGRAM; Pearson

 Deitel and Deitel; C++ HOW TO PROGRAM; Pearson

 Deitel and Deitel: JAVA HOW TO PROGRAM; Pearson

 Deitel and Deitel: INTRO TO PYTHON FOR COMPUTER SCIENCE
AND DATA SCIENCE, LEARNING TO PROGRAM WITH AI, BIG
DATA AND THE CLOUD, Pearson

Assessment
Coursework 30%
Examinations 60%
Class participation and Attendance 10%
Total 100%

Language English

